Practical CFD Modeling: Mesh Deformation

Practical CFD Modeling: Mesh Deformation

Mesh deformation is incredibly frustrating, complicated, unstable . . . and unavoidable if you want to incorporate body motions into CFD. Modeling body motion demands mesh deformation, changing the mesh on the fly, while using it to solve transport equations. As you might expect, that brings a host of new challenges. This reviews several new strategies that the CFD engineers needs to consider.

Practical CFD Modeling: Time Variation

Practical CFD Modeling: Time Variation

When we add the time domain, simulations change from modeling steady scenarios to unsteady, where boundary conditions change over time. Beyond the physics, modeling unsteady flow requires a few changes to the CFD solver. Inner iterations, timestep, Courant Number, and data management all enter into the strategy for the CFD engineer. Today we discuss each of these.

Practical CFD Modeling: Volume of Fluid Modeling

Practical CFD Modeling: Volume of Fluid Modeling

Computational Fluid Dynamics (CFD) can model multiple fluids with the volume of fluid method. (VOF) The volume of fluid method opens new horizons for advanced modeling, which requires additional planning from the CFD engineer. Dive into the boundary conditions, meshing strategy, stability concerns, and more. Discover the world of VOF modeling.

Practical CFD Modeling: Turbulence

Practical CFD Modeling: Turbulence

Turbulence demands modeling just like any other equation in computational fluid dynamics (CFD). As the CFD engineer, you need to describe boundary conditions for your turbulence equations. This article describes how to define boundary conditions for turbulence and provides typical values for normal simulations.

How to Cut the Bunker Bill: Preparing for IMO 2020

How to Cut the Bunker Bill: Preparing for IMO 2020

Ready or not, here it comes! No matter who you talk to, IMO 2020 promises to be a time of uncertain fuel prices. If fuel prices will go up, your fuel consumption needs to go down. Here are eight practical ways to reduce your fuel consumption.

Guts of CFD: Near Wall Effects

Guts of CFD: Near Wall Effects

Turbulence does tricky things near walls. Boundary layers and laminar sublayers compact interesting flow patterns into a very small space. Small it may be, but experience proved we cannot ignore it. The boundary layer forms on the body, which is our object of interest, arguably the most critical region. Turbulence is most critical near the wall, and we need to consider near wall effects.