Guts of CFD:  Near Wall Effects

Guts of CFD: Near Wall Effects

Turbulence does tricky things near walls. Boundary layers and laminar sublayers compact interesting flow patterns into a very small space. Small it may be, but experience proved we cannot ignore it. The boundary layer forms on the body, which is our object of interest, arguably the most critical region. Turbulence is most critical near the wall, and we need to consider near wall effects.

Practical CFD Modeling:  Judging Convergence

Practical CFD Modeling: Judging Convergence

CFD convergence is not an exact science. The CFD engineer relies on three tools to judge when a simulation finishes: monitors, flow patterns, and residuals. But none of these tools work 100% of the time. The well-trained engineer understands how to use these tools and how to combine them into a cohesive picture and reliably judge a converged CFD simulation.

Guts of CFD:  Interpolation Equations

Guts of CFD: Interpolation Equations

The core of all calculus problems require us to consider something infinitely small. Ask a computer to ponder the concept of infinity and watch its circuits fry. If we want to solve the equations of computational fluid dynamics (CFD), we need a way to fake calculus. This impacts the stability, the mesh quality, and the ultimate simulation quality. Enter interpolation equations.

Guts of CFD:  Transport Equation

Guts of CFD: Transport Equation

What is the utility of a transport equation? What do they achieve? Transport equations form the fundamental language of computational fluid dynamics (CFD). CFD engineers use them to communicate ideas, program CFD software, and diagnose problems with their simulations. But they only work if you understand the language. Today we explain transport equations and the significance of their terms.