Advanced Analysis

DMS specializes in advanced analysis.  We possess extensive background in the theory and practice with a range of computer simulation and analysis techniques.  We have experience in multiple simulation software packages.   We learned the tricks of the trade to ensure efficient project execution.

More important, we are experts in practical and relevant analysis.  We don’t just report a string of useless numbers.  We explain their significance.  We relate the computer back to the real world.  We keep our analysis grounded in reality, focused on the important part:  your ship.

At DMS, we also know that computers can lie.  Simulation based analysis does not guarantee accuracy.  The computer happily produces garbage without the watchful eye of an experienced engineer.  DMS remains rigorous in our approach to simulation quality.  We routinely expand our library of validation studies in both FEA and CFD.  And we perform mesh independence studies on every single simulation.  Every simulation report includes a quantification of simulation error.  We tell you exactly how much to trust the simulation and what safety factors to apply.  This delivers ultimate confidence, not in the computer, but in the engineer controlling that computer.

Learn More About Advanced Analysis

  1. Finite element analysis (FEA)
  2. Fatigue analysis
  3. FEA fatigue analysis
  4. Composite materials structural analysis
  5. Composite materials FEA
  6. Computational fluid dynamics (CFD)

Want to Learn More?

We are happy to discuss your next project.  We can customize each project to meet your exact goals.

We also offer free general project plans to help prepare for your next round of quotes.

At DMS, we are dedicated to your success.

Relevant Ship Science Articles

Guts of CFD: Interpolation Equations

The core of all calculus problems require us to consider something infinitely small. Ask a computer to ponder the concept of infinity and watch its circuits fry. If we want to solve the equations of computational fluid dynamics (CFD), we need a way to fake calculus. This impacts the stability, the mesh quality, and the ultimate simulation quality. Enter interpolation equations.

read more

Guts of CFD: Transport Equation

What is the utility of a transport equation? What do they achieve? Transport equations form the fundamental language of computational fluid dynamics (CFD). CFD engineers use them to communicate ideas, program CFD software, and diagnose problems with their simulations. But they only work if you understand the language. Today we explain transport equations and the significance of their terms.

read more

Guts of CFD: Navier Stokes Equations

Navier Stokes Equation. Shrouded in mystery and intimidation. Navier Stokes is essential to CFD, and to all fluid mechanics. This equation defines the basic properties of fluid motion. But there is more to gain from understanding the meaning of the equation rather than memorizing its derivation. Today we review Navier Stokes Equation with a focus on the meaning behind the math.

read more

Practical CFD: General Approach

Just fresh out of college, and the boss assigned your first project for computational fluid dynamics (CFD). You are excited. You can’t wait to begin the challenge. You sit down at your computer, start up the CFD software . . . and freeze like a deer in headlights. How to begin? What to do first? Today we discuss the general workflow for a CFD project and highlight some general modeling advice.

read more

CFD Workflow

What happens behind the curtain when the CFD engineer goes to work? What goes into making a CFD simulation? As a project manager, you need to understand the workflow of a CFD project; this helps you plan the project and track budget expenses. When we understand the workflow, we know the right questions and can anticipate project delays.

read more